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1 Ruin probability in finite time

Krzysztof Burnecki and Marek Teuerle

1.1 Introduction

In examining the nature of the risk associated with a portfolio of business, it is
often of interest to assess how the portfolio may be expected to perform over an
extended period of time. One approach involves the use of ruin theory (Panjer
and Willmot, 1992). Ruin theory is concerned with the excess of the income
(with respect to a portfolio of business) over the outgo, or claims paid. This
quantity, referred to as insurer’s surplus, varies in time. Specifically, ruin is said
to occur if the insurer’s surplus reaches a specified lower bound, e.g. minus the
initial capital. One measure of risk is the probability of such an event, clearly
reflecting the volatility inherent in the business. In addition, it can serve as a
useful tool in long range planning for the use of insurer’s funds.

We recall from Chapter ?? that the classical risk process {Rt}t≥0 is given by

Rt = u+ ct−
Nt
∑

i=1

Xi,

where the initial capital of the insurance company is denoted by u, the homoge-
neous Poisson process (HPP) Nt with intensity (rate) λ describes the number
of claims in (0, t] interval and claim severities are random, given by i.i.d. non-
negative sequence {Xk}∞k=1 with mean value µ and variance σ2, independent of
Nt. The insurance company receives a premium at a constant rate c per unit
time, where c = (1 + θ)λµ and θ > 0 is called the relative safety loading.

We define the claim surplus process {St}t≥0 as

St = u−Rt =

Nt
∑

i=1

Xi − ct,
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and the time to ruin as τ(u) = inf{t ≥ 0 : Rt < 0} = inf{t ≥ 0 : St > u}. Let
L = sup0≤t<∞{St} and LT = sup0≤t<T {St}. The ruin probability in infinite
time, i.e. the probability that the capital of an insurance company ever drops
below zero can be then written as

ψ(u) = P(τ(u) <∞) = P(L > u). (1.1)

We note that the above definition implies that the relative safety loading θ has
to be positive, otherwise c would be less than λµ and thus with probability 1
the risk business would become negative in infinite time. The ruin probability
in finite time T is given by

ψ(u, T ) = P(τ(u) ≤ T ) = P(LT > u). (1.2)

From a practical point of view, ψ(u, T ), where T is related to the planning
horizon of the company, is regarded as more interesting than ψ(u). Most in-
surance managers will closely follow the development of the risk business and
increase the premium if the risk business behaves badly. The planning horizon
may be thought of as the sum of the following: the time until the risk business
is found to behave “badly”, the time until the management reacts and the time
until a decision of a premium increase takes effect. Therefore, in non-life in-
surance, it may be natural to regard T equal to four or five years as reasonable
(Grandell, 1991).

Let us now analyze the finite-time ruin probability for the probably most
practical generalization of the classical risk process, where the occurrence of
the claims is described by the non-homogeneous Poisson process (NHPP), see
Chapter ??. It can be proved that switching from HPP to NHPP results only
in altering the time horizon T . This stems from the following fact. Consider
a risk process R̃t driven by a non-homogeneous Poisson process Ñt with the
intensity function λ(t), namely

R̃t = u+ (1 + θ)µ

∫ t

0

λ(s)ds−
Ñt
∑

i=1

Xi. (1.3)

Define now Λt =
∫ t

0
λ(s)ds and Rt = R̃(Λ−1

t ). Then the counting process

Nt = Ñ(Λ−1
t ) is a standard Poisson process, and therefore,

ψ̃(u, T ) = P

{

inf
0<t≤T

(R̃t) < 0

}

= P

{

inf
0<t≤ΛT

(Rt) < 0

}

= ψ(u,ΛT ). (1.4)
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The time scale defined by Λ−1
t is called the operational time scale.

The ruin probability in finite time can only be calculated analytically for a
few special cases of the claim amount distribution. The most classic example
is discussed in Section 1.2. The value of ψ(u, T ) can always be computed di-
rectly using Monte Carlo simulations, however, this is usually a time-consuming
procedure. Thus, finding a reliable approximation is really important from a
practical point of view. The most important approximations of the finite time
ruin probability are presented in Section 1.3. They are further illustrated in
Section 1.4 using the Danish fire losses dataset, introduced in Chapter ??, which
concerns major fire losses in profits that occurred between 1980 and 2002 and
were recorded by Copenhagen Re.

We note that ruin theory has been also recently employed as an interesting
tool in operational risk (Degen, Embrechts, and Lambrigger, 2007; Kaishev,
Dimitrova, and Ignatov, 2008). In the view of the data already available on op-
erational risk, ruin type estimates may become useful (Embrechts, Kaufmann,
and Samorodnitsky, 2004).

1.1.1 Light- and heavy-tailed distributions

A distribution FX(x) is said to be light-tailed, if there exist constants a > 0,
b > 0 such that F̄X(x) = 1−FX(x) ≤ ae−bx or, equivalently, if there exist z > 0,
such that MX(z) < ∞, where MX(z) is the moment generating function, see
Chapter ??. Distribution FX(x) is said to be heavy-tailed, if for all a > 0,
b > 0 F̄X(x) > ae−bx, or, equivalently, if ∀z > 0 MX(z) = ∞. We study here
eight claim size distributions, as listed in Table 1.1.

In the case of light-tailed claims the adjustment coefficient (also called the
Lundberg exponent) plays a key role in calculating the ruin probability. Let
γ = supz {MX(z)} <∞ and let R be a positive solution of the equation:

1 + (1 + θ)µR = MX(R), R < γ. (1.5)

If there exists a non-zero solution R to the above equation, we call it an ad-
justment coefficient. Clearly, R = 0 satisfies equation (1.5), but there may
exist a positive solution as well (this requires that X has a moment generating
function, thus excluding distributions such as Pareto and the log-normal). To
see the plausibility of this result, note that MX(0) = 1, M ′

X(z) < 0, M
′′

X(z) > 0

and M
′

X(0) = −µ. Hence, the curves y = MX(z) and y = 1 + (1 + θ)µz may
intersect, as shown in Figure 1.1.
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Table 1.1: Typical claim size distributions. In all cases x ≥ 0.

Name Parameters pdf
Light-tailed distributions

Exponential β > 0 fX(x) = β exp(−βx)
Gamma α > 0, β > 0 fX(x) = βα

Γ(α)x
α−1 exp(−βx)

Weibull β > 0, τ ≥ 1 fX(x) = βτxτ−1 exp(−βxτ )

Mixed exp’s βi > 0,
n
∑

i=1

ai = 1 fX(x) =
n
∑

i=1

{aiβi exp(−βix)}
Heavy-tailed distributions

Weibull β > 0, 0 < τ < 1 fX(x) = βτxτ−1 exp(−βxτ )

Log-normal µ ∈ R, σ > 0 fX(x) = 1√
2πσx

exp
{

− (ln x−µ)2

2σ2

}

Pareto α > 0, λ > 0 fX(x) = α
λ+x

(

λ
λ+x

)α

Burr α > 0, λ > 0, τ > 0 fX(x) = ατλαxτ−1

(λ+xτ )α+1

0 R
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Figure 1.1: Illustration of the existence of the adjustment coefficient.

STF2ruin01.m

http://www.quantlet.de/codes//STF2ruin01.html


1.2 Exact ruin probabilities in finite time 5

An analytical solution to equation (1.5) exists only for few claim distributions.
However, it is quite easy to obtain a numerical solution. The coefficient R
satisfies the inequality:

R <
2θµ

µ(2)
, (1.6)

where µ(2) = E(X2
i ), see Asmussen (2000). Let D(z) = 1+ (1+ θ)µz−MX(z).

Thus, the adjustment coefficient R > 0 satisfies the equation D(R) = 0. In
order to get the solution one may use the Newton-Raphson formula

Rj+1 = Rj −
D(Rj)

D′(Rj)
, (1.7)

with the initial condition R0 = 2θµ/µ(2), where D′(z) = (1 + θ)µ −M ′
X(z).

Moreover, if it is possible to calculate the third raw moment µ(3), we can obtain
a sharper bound than (1.6) (Panjer and Willmot, 1992):

R <
12µθ

3µ(2) +
√

9(µ(2))2 + 24µµ(3)θ
,

and use it as the initial condition in (1.7).

1.2 Exact ruin probabilities in finite time

We are now interested in the probability that the insurer’s capital as defined
by (1.1) remains non-negative for a finite period T . We assume that the claim
counting process Nt is a homogeneous Poisson process (HPP) with rate λ, and
consequently, the total claims (aggregate loss) process is a compound Poisson
process. Premiums are payable at rate c per unit time. We recall that if Nt

is a non-homogeneous Poisson process, which will be the case for all numerical
examples, then it is enough to rescale the time horizon T for the ruin probability
obtained for the classic HPP case, see the discussion at the end of Section 1.1.

In contrast to the infinite time case there is no general result for the ruin
probability like the Pollaczek–Khinchin formula (Burnecki, Místa, and Weron,
2005). In the literature one can only find a partial integro-differential equation
which satisfies the probability of non-ruin, see Panjer and Willmot (1992). An
explicit result is merely known for the exponential claims, and even is this case
numerical integration is needed (Asmussen, 2000).
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1.2.1 Exponential claim amounts

First, in order to simplify the formulae, let us assume that claims have the
exponential distribution with β = 1 and the amount of premium is c = 1.
Then

ψ(u, T ) = λ exp {−(1 − λ)u} − 1

π

∫ π

0

f1(x)f2(x)

f3(x)
dx, (1.8)

where

f1(x) = λ exp
{

2
√
λT cosx− (1 + λ)T + u

(√
λ cosx− 1

)}

, (1.9)

f2(x) = cos
(

u
√
λ sinx

)

− cos
(

u
√
λ sinx+ 2x

)

, (1.10)

and
f3(x) = 1 + λ− 2

√
λ cosx. (1.11)

Now, notice that the case β 6= 1 is easily reduced to β = 1, using the formula:

ψλ,β(u, T ) = ψλ
β

,1(βu, βT ). (1.12)

Moreover, the assumption c = 1 is not restrictive since we have

ψλ,c(u, T ) = ψλ/c,1(u, cT ). (1.13)

Table 1.2 shows the exact values of the ruin probability for a NHPP with
the intensity rate λ(t) = 17.9937 + 7.1518t and exponential claims with β =
1.9114 · 10−6 (the parameters were estimated in Chapter ?? for the Danish
fire losses dataset) with respect to the initial capital u and the time horizon T .
The relative safety loading θ is set to 30%.

1.3 Approximations of the ruin probability in finite

time

In this section, we present six different approximations. We illustrate them on
a common example, namely a NHPP with the intensity rate λ(t) = 17.9937 +
7.1518t, the mixture of two exponentials claims with β1 = 3.8617 · 10−7, β2 =
3.6909 · 10−6 and a = 0.2568 (the parameters were estimated in Chapter ??
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Table 1.2: The ruin probability for a NHPP with the intensity function λ(t) =
17.9937 + 7.1518t, exponential claims with β = 1.9114 · 10−6 and
θ = 0.3 (u in DKK millions).

u 0 1 2 5 10 15

ψ(u, 1) 0.745163 0.447479 0.263129 0.046887 0.001719 0.000039
ψ(u, 2) 0.763315 0.482797 0.303608 0.072409 0.005595 0.000338
ψ(u, 3) 0.767620 0.491540 0.314220 0.080994 0.007930 0.000694
ψ(u, 4) 0.768802 0.493980 0.317247 0.083702 0.008891 0.000903
ψ(u, 5) 0.769230 0.494649 0.318087 0.084768 0.009341 0.001029

STF2ruin02.m

for the Danish fire losses dataset) and the relative safety loading θ = 30%.
Numerical comparison of the approximations is given in Section 1.4. All the
formulas presented in this section assume the classic form of the risk process,
however, we recall that if the process Nt is a NHPP, then it is enough to rescale
the time horizon T for the ruin probability obtained for the classic HPP case.

1.3.1 Monte Carlo method

The ruin probability in finite time can always be approximated by means of
Monte Carlo simulations. Table 1.3 shows the output for the with respect to
the initial capital u and the time horizon T . We note that the Monte Carlo
method will be used as a reference method when comparing different finite time
approximations in Section 1.4.

1.3.2 Segerdahl normal approximation

The following result due to Segerdahl (1955) is said to be a time-dependent
version of the Cramér–Lundberg approximation .

ψS(u, T ) = C exp(−Ru)Φ
(

T − umL

ωL
√
u

)

, (1.14)

http://www.quantlet.de/codes//STF2ruin02.html
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Table 1.3: Monte Carlo results (50 x 10000 simulations) for a NHPP with the
intensity function λ(t) = 17.9937+7.1518t, mixture of two exponen-
tials claims with β1 = 3.8617 · 10−7, β2 = 3.6909 · 10−6, a = 0.2568
and θ = 0.3 (u in DKK million).

u 0 1 5 10 20 50

ψ(u, 1) 0.702560 0.561842 0.302862 0.130702 0.020922 0.000062
ψ(u, 2) 0.746522 0.623986 0.369984 0.193242 0.046346 0.000424
ψ(u, 3) 0.758588 0.638384 0.403508 0.224844 0.064726 0.001566
ψ(u, 4) 0.762924 0.646102 0.417342 0.238882 0.075002 0.001900
ψ(u, 5) 0.763706 0.653820 0.419522 0.244244 0.081800 0.002300

STF2ruin03.m

Table 1.4: The Segerdahl approximation for the same parameters as in Table
1.3.

u 0 1 5 10 20 50

ψ(u, 1) 0.727958 0.593121 0.253626 0.110960 0.025333 0.000418
ψ(u, 2) 0.727958 0.654281 0.425585 0.237081 0.065324 0.001218
ψ(u, 3) 0.727958 0.654281 0.426969 0.250430 0.086090 0.003089
ψ(u, 4) 0.727958 0.654281 0.426969 0.250430 0.086152 0.003507
ψ(u, 5) 0.727958 0.654281 0.426969 0.250430 0.086152 0.003508

STF2ruin04.m

where C = θµ/ {M ′
X(R) − µ(1 + θ)}, mL = C {λM ′

X(R) − 1}−1
and

ω2
L = λM ′′

X(R)m3
L. This method requires existence of the adjustment coeffi-

cient, so the moment generating function. This implies that only light-tailed
distributions can be used. Numerical evidence shows that the Segerdahl ap-
proximation gives the best results for large values of the initial capital u, see
Asmussen (2000).

In Table 1.4 the results of the Segerdahl approximation are presented with
respect to the initial capital u and the time horizon T . We can see that the

http://www.quantlet.de/codes//STF2ruin03.html
http://www.quantlet.de/codes//STF2ruin04.html
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Table 1.5: The diffusion approximation by Brownian motion for the same pa-
rameters as in Table 1.3.

u 0 1 5 10 20 50

ψ(u, 1) 1.000000 0.830499 0.366727 0.108608 0.004407 0.000000
ψ(u, 2) 1.000000 0.860162 0.467565 0.213980 0.040964 0.000097
ψ(u, 3) 1.000000 0.863616 0.480142 0.239134 0.052420 0.000531
ψ(u, 4) 1.000000 0.863892 0.481159 0.231498 0.053569 0.000657
ψ(u, 5) 1.000000 0.863902 0.481196 0.231549 0.053615 0.000665

STF2ruin05.m

approximation in the considered case yields quite accurate results for larger u’s
except for u = 50 million DKK, see Table 1.3, but this effect can be explained
by very small values of the probability.

1.3.3 Diffusion approximation by Brownian motion

The idea of a diffusion (weak) approximation goes back to Iglehart (1969). The
first approximation we study assumes that the distribution of claim sizes be-
longs to the domain of attraction of the normal law, i.e. claims are i.i.d. and
have light tails. This leads to the approximation of the risk process by a diffu-
sion driven by the Brownian motion. In this case one can calculate an analytical
approximation formula for the ruin probability in finite time (Grandell, 1991):

ψDB(u, t) = P

{

inf
0≤t≤T

(

u+ (c− λµ)t−
√

λµ(2)B(t)
)

< 0

}

=

= IG

(

Tµ2
c

σ2
c

;−1;
u|µc|
σ2

c

)

, (1.15)

where B(t) denotes the Brownian motion, µc = λθµ, σc = λµ(2) and IG(·; ζ;u)
denotes the inverse Gaussian distribution function, namely

IG(x; ζ;u) = 1 − Φ
(

u/
√
x− ζ

√
x
)

+ exp (2ζu) Φ
(

−u/
√
x− ζ

√
x
)

. (1.16)

This formula can be also obtained by matching the first two moments of the
claim surplus process St and a Brownian motion with drift (arithmetic Brow-

http://www.quantlet.de/codes//STF2ruin05.html
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nian motion), and noting that such an approximation implies that the first
passage probabilities are close. The first passage probability serves as the ruin
probability, see Asmussen (2000). We also note that in order to apply this
approximation we need the existence of the second moment of the claim size
distribution.

Table 1.5 shows the results of the diffusion approximation by Brownian motion
with respect to the initial capital u and the time horizon T . The results lead
to the conclusion that the approximation does not produce accurate results for
such a choice of the claim size distribution. Only when u = 10 million DKK
the results are acceptable, compare with the reference values in Table 1.3.

1.3.4 Corrected diffusion approximation

The idea presented in Section 1.3.3 ignores the presence of jumps in the risk
process (the Brownian motion with drift can continuous trajectories). The cor-
rected diffusion approximation takes this and other deficits into consideration
(Asmussen, 2000). Under the assumption that c = 1, see relation (1.13), we
have

ψCD(u, t) = IG

(

Tδ1
u2

+
δ2
u

;−Ru
2

; 1 +
δ2
u

)

, (1.17)

whereR is the adjustment coefficient, δ1 = λM ′′
X(γ0), δ2 = M ′′′

X (γ0)/ {3M ′′
X(γ0)}

and γ0 satisfies the equation: κ′(γ0) = 0, where κ(s) = λ {MX(s) − 1}−s. Sim-
ilarly as in the Segerdahl approximation, the method requires existence of the
moment generating function, so we can use it only for light-tailed distributions.

In Table 1.6 the results of the corrected diffusion approximation are given
with respect to the initial capital u and the time horizon T . It turns out that
corrected diffusion method gives surprisingly good results and is vastly superior
to the ordinary diffusion approximation, compare with the reference values in
Table 1.3.

1.3.5 Diffusion approximation by α-stable Lévy motion

In this section we present the α-stable Lévy motion approximation introduced
by Furrer, Michna, and Weron (1997). This is an extension of the Brownian mo-
tion approximation approach. It can be applied when claims are heavy-tailed
(with power-law tails), which, as the empirical results presented in Chapter ??
show, is statistically justified.
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Table 1.6: The corrected diffusion approximation for the same parameters as
in Table 1.3.

u 0 1 5 10 20 50

ψ(u, 1) 0.650009 0.559629 0.299801 0.130689 0.021822 0.000005
ψ(u, 2) 0.716917 0.640833 0.407336 0.228746 0.069354 0.001368
ψ(u, 3) 0.726023 0.652191 0.424489 0.247849 0.084042 0.003061
ψ(u, 4) 0.726957 0.653363 0.426310 0.249983 0.085927 0.003471
ψ(u, 5) 0.727007 0.653426 0.426410 0.250100 0.086037 0.003502

STF2ruin06.m

We assume that the distribution of the claim sizes belongs to the domain of
attraction of the stable law, that is:

1

ϕ(n)

n
∑

k=1

(Xk − µ)
d→ Zα,β(1) , (1.18)

where ϕ(n) = L(n)n1/α for L(n) being a slowly varying function in infinity,
Zα,β(t) is the α-stable Lévy motion with scale parameter 1, skewness parameter
β, and 1 < α < 2 (Nolan, 2010).

If ϕ(n) = σ′n1/α, so that {Xk : k ∈ N } belong to the so-called normal domain
of attraction, then the diffusion approximation with α-stable Lévy motion is
given by:

ψDS(u, T ) = P

(

inf
0≤t≤T

(u+ (c− λµ)t− σ′λ1/αZα,β(t)) < 0

)

, (1.19)

where this probability can be calculated via Monte Carlo method by simulating
trajectories of α-stable Lévy motion.

In order to illustrate formula (1.19) we cannot consider mixture of exponentials
case which was discussed in Sections 1.3.1-1.3.4 as it belongs to the domain of
attraction of normal law. Let us now assume that the claim amounts are Pareto
distributed with parameters 1 < α′ < 2 and λ′. One may check (Nolan, 2010)
that the Pareto distribution belongs to the domain of attraction of α-stable
law with

α = α′

http://www.quantlet.de/codes//STF2ruin06.html
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Table 1.7: Diffusion approximation with α-stable Lévy motion for a NHPP with
the intensity function λ(t) = 17.9937 + 7.1518t, Pareto claims with
α

′

= 1.3127, λ
′

= 4.0588 · 105 and θ = 0.3 (u in DKK million).

u 0 1 5 10 20 50

ψ(u, 1) 0.469314 0.383986 0.232228 0.154332 0.087890 0.033532
ψ(u, 2) 0.563410 0.491590 0.357850 0.280278 0.200526 0.106646
ψ(u, 3) 0.605470 0.540044 0.417866 0.345702 0.268440 0.168546
ψ(u, 4) 0.629782 0.568426 0.453638 0.385306 0.311520 0.212744
ψ(u, 5) 0.646558 0.587962 0.478302 0.412866 0.341622 0.245320

STF2ruin07.m

and

σ′ = λ′

(

π

2Γ(α′) sin(α′π
2 )

)1/α′

= λ′
(

Γ(2 − α′)

α′ − 1

∣

∣

∣

∣

cos
πα′

2

∣

∣

∣

∣

)1/α′

.

Table 1.7 depicts the results of the diffusion approximation with α-stable Lévy
motion for a NHPP with the intensity rate λ(t), Pareto claims with α′, λ′ with
respect to the initial capital u and the time horizon T . The relative safety
loading θ equals 30%.

1.3.6 Finite time De Vylder approximation

Let us recall the idea of the De Vylder approximation in infinite time (Burnecki,
Místa, and Weron, 2005): we replace the claim surplus process with the one
with θ = θ̄, λ = λ̄ and exponential claims with parameter β̄, fitting first three
moments. Here, the idea is the same. First, we compute

β̄ =
3µ(2)

µ(3)
, λ̄ =

9λµ(2)3

2µ(3)2
, and θ̄ =

2µµ(3)

3µ(2)2
θ.

Next, we employ relations (1.12) and (1.13) and finally use the exact, exponen-
tial case formula (1.8) presented in Section 1.2.1. Obviously, the method gives

http://www.quantlet.de/codes//STF2ruin07.html
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Table 1.8: The finite time De Vylder approximation for for the same parameters
as in Table 1.3.

u 0 1 5 10 20 50

ψ(u, 1) 0.653971 0.563171 0.301532 0.130580 0.020847 0.000033
ψ(u, 2) 0.720692 0.644069 0.409016 0.229379 0.069275 0.001321
ψ(u, 3) 0.729778 0.655428 0.426237 0.248602 0.084106 0.003036
ψ(u, 4) 0.730717 0.656609 0.428081 0.250765 0.086020 0.003486
ψ(u, 5) 0.730769 0.656675 0.428185 0.250889 0.086136 0.003486

STF2ruin08.m

the exact result in the exponential case. For other claim distributions, the first
three moments have to exist in order to apply the approximation.

Table 1.8 shows the results of the finite time De Vylder approximation with
respect to the initial capital u and the time horizon T . We see that this approx-
imation gives even better results than the corrected diffusion approximation,
compare with the reference values presented in Table 1.3.

Table 1.9 shows which approximation can be used for each claim size distribu-
tion. Moreover, the necessary assumptions on the distribution parameters are
presented.

Table 1.9: Approximations and their range of applicability

Distrib. Exp. Gamma Wei- Mix. Log- Pareto Burr

Method bull Exp. normal

Monte Carlo + + + + + + +

Segerdahl + + – + – – –

Brown. diff. + + + + + α > 2 ατ > 2

Corr. diff. + + – + – – –

Stable diff. – – – – – α < 2 ατ < 2

Fin. De Vylder + + + + + α > 3 ατ > 3

http://www.quantlet.de/codes//STF2ruin08.html
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Figure 1.2: The reference ruin probability obtained via Monte Carlo simula-
tions (left panel), the relative error of the approximations (right
panel). The mixture of two exponentials case with T fixed and u
varying.
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1.4 Numerical comparison of the finite time

approximations

Now, we will illustrate all six approximations presented in Section 1.3. We
consider three claim amount distributions which were best fitted to the Danish
fire losses data in Chapter ??, namely the mixture of two exponentials (a
running example in Section 1.3), log-normal and Pareto distributions. The
parameters of the distributions are: β1 = 3.8617 · 10−7, β2 = 3.6909 · 10−6,
a = 0.2568 (mixture), µ = 12.5247, σ2 = 1.5384 (log-normal), and α = 1.3127,
λ = 4.0588 · 105 (Pareto). The ruin probability will be depicted as a function
of u, ranging from 0 to 30 million DKK, with fixed T = 1 or with fixed value
of u = 5 million DKK and varying T from 0 to 5 years. The relative safety
loading is set to 30%. All figures have the same form of output. In the left
panel, the reference ruin probability values obtained via 10 x 10000 Monte
Carlo simulations are presented. The right panel depicts the relative error
with respect to the reference values.

First, we consider the mixture of two exponentials. As we can see in Figures 1.2

http://www.quantlet.de/codes//STF2ruin09.html
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Figure 1.3: The reference ruin probability obtained via Monte Carlo simula-
tions (left panel), the relative error of the approximations (right
panel). The mixture of two exponentials case with u fixed and T
varying.
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and 1.3 the Brownian motion diffusion and Segerdahl approximations almost
for all values of u and T give highly incorrect results. Corrected diffusion
and finite time De Vylder approximations yield acceptable errors, which are
generally below 10%.

In the case of log-normally distributed claims, we can only apply two approx-
imations: diffusion by Brownian motion and finite time De Vylder, see Table
1.9. Figures 1.4 and 1.5 depict the reference ruin probability values obtained
via Monte Carlo simulations and the relative errors with respect to the refer-
ence values. Again, the finite time De Vylder approximation works better than
the diffusion approximation, but, in general, the errors are not acceptable.

Finally, we take into consideration the Pareto claim size distribution. Fig-
ures 1.6 and 1.7 depict the reference ruin probability values and the relative
errors with respect to the reference values for the α-stable Lévy motion diffu-
sion approximation (we cannot apply finite time De Vylder approximation as
α < 3). We see that the error is quite low for high values of T .

http://www.quantlet.de/codes//STF2ruin10.html
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Figure 1.4: The reference ruin probability obtained via Monte Carlo simula-
tions (left panel), the relative error of the approximations (right
panel). The log-normal case with T fixed and u varying.
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Figure 1.5: The reference ruin probability obtained via Monte Carlo simula-
tions (left panel), the relative error of the approximations (right
panel). The log-normal case with u fixed and T varying.
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Figure 1.6: The reference ruin probability obtained via Monte Carlo simula-
tions (left panel), the relative error of the approximation with α-
stable Lévy motion (right panel). The Pareto case with T fixed and
u varying.
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Figure 1.7: The reference ruin probability obtained via Monte Carlo simula-
tions (left panel), the relative error of the approximation with α-
stable Lévy motion (right panel). The Pareto case with u fixed and
T varying.
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and Infinite Time, in P. Cizek, W. Härdle, and R. Weron (eds.) Statistical
Tools for Finance and Insurance, Springer, Berlin, 341-379.
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